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Abstract 
 

The discovery of nearest neighbors, without training in advance, has many applications, such 

as the formation of mosaic images, image matching, image retrieval and image stitching. 

When the quantity of data is huge and the number of dimensions is high, the efficient 

identification of a nearest neighbor (NN) is very important. This study proposes a variation of 

the KD-tree - the arbitrary KD-tree (KDA) - which is constructed without the need to evaluate 

variances. Multiple KDAs can be constructed efficiently and possess independent tree 

structures, when the amount of data is large. Upon testing, using extended synthetic databases 

and real-world SIFT data, this study concludes that the KDA method increases computational 

efficiency and produces satisfactory accuracy, when solving NN problems. 
 

 

Keywords: Arbitrary KD-tree (KDA), Feature Point, KD-Tree, Nearest Neighbor (NN), 

Image Stitching 
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1. Introduction 

Feature matching in two images identifies the relationship between two sets of feature points 

extracted from images, such that corresponding points are associated by the least distance, 

compared to their association from other points. It is a key problem in tasks involving 

computer vision. Object recognition, tracking, building panoramas and image registration are 

just a few examples of many other possible applications. Successful feature matching requires 

the robust identification of the features. Various studies have used edges, corners, or 

histograms as features [1], [2]. The SIFT, proposed by Lowe [3], is probably the best known 

feature descriptor. It uses the difference between Gaussian (DoG) and scale space to locate the 

feature points and produces a local descriptor with a dimension of 128. Every image probably 

contains thousands of SIFT features. The large amount of high dimensional data makes feature 

matching between two images computationally cumbersome. Therefore, the efficient location 

of a nearest neighbor (NN) in such a large number of candidates and the high dimensionality 

are critical issues. This paper investigates the use of multiple KD-trees for large quantities of 

high-dimensional data and proposes an Arbitrary KD-tree (KDA) to manage this type of data, 

to ensure more efficient computation.  

The remainder of the paper is organized as follows: Section 2 provides a review of related 

work, KD-trees and BBFs. Section 3 describes the method and the experimental results are 

given in Section 4. Finally, the conclusion is stated. 

2. Related Work 

One of the most widely used algorithms for a nearest-neighbor search in multidimensional 

data is the KD-tree [4]. A KD-tree is a space-partitioning data structure for 

organizing points in a K-dimensional space. It first calculates the variance of each dimension 

and then partitions the data into two halves, according to the medium on the dimension in 

which data possesses the greatest variance. The splitting procedure repeats, until the leaf node 

is reached [5]. The KD-tree works well when searching for an exact nearest neighbor in low 

dimensional data, but quickly loses its effectiveness as dimensionality increases. One way to 

improve the performance is to visit more leaf nodes, i.e, backtracking. However, as 

Silpa-Anan et al. indicated [6], increasing the amount of backtracking in one tree does not 

result in independent searches and, so there are diminished returns. Conversely, if multiple 

KD-trees are constructed, using different parameters and different methods of selection for 

partitioning values, for example, the order of the search nodes and the search results for these 

KD-trees may be different. Many studies have used multiple KD-trees with this concept, in the 

hope of increasing the level of independence of searches. Randomized Trees, Multiple 

Randomized KD-Trees, a hierarchical K-means tree, a PKD-Tree  and Six-KD-Trees have all 

been used [7], [8], [9]. However, for large data sets, the space requirements for managing large 

numbers of trees create their own problems.  

When finding a NN from a data set arranged in a KD-tree, backtracking is essential, to 

increase the accuracy of the search. Lowe [3] proposed the Best-Bin-First (BBF) method on a 

Priority Queue, to improve the execution of backtracking. The algorithm initially performs a 

single traverse through the tree and adds all of the unexplored branches in each node along the 

path to a priority queue. To execute a backtracking, the branch that has the closest distance to 

the query point is extracted and removed from the priority queue and the traverse of the tree is 
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restarted from that branch (similarly, all the unexplored branches along the path are added to 

the priority queue). The backtracking stops when a pre-defined number of leaf nodes have 

been visited, or when every distance from the unexplored branch to the query point is greater 

than d, where d = min {distance (query-point, leaf-node)} for all visited leaf-nodes. For large 

quantities of high-dimensional data, the backtracking stops usually due to the number of 

visited leaf nodes reaches the pre-defined limit. When the search ends, the data point that 

corresponds to the distance, d, is returned as the search result. 

Inspired by the work in [6], Muja and Lowe proposed a multiple randomized KD-tree 

(KDR) [7]. In order to increase “randomization”, when constructing trees, the randomized 

KD-Tree (KDR) is constructed by randomly choosing the split dimension from the first k 

dimensions in which data has the greatest variance. The fixed value, k = 5, was used in their 

study. Multiple trees with different structures are easily produced, using this method. It was 

demonstrated that KDR can speed the matching of high-dimensional vectors by up to several 

orders of magnitude, compared to a linear search.  

3. The Proposed Method 

In this section, the definition of the proposed Arbitrary KD-tree (KDA) is given. Further 

discussions are provided with respect to randomization and complexity of the KDA. 

3.1 Randomization 

A KD-tree for N data requires (N-1) splitting dimensions. If a dimension is randomly selected 

as the splitting dimension, to construct multiple KD-trees, say M trees, then, altogether, there 

are M(N-1) random selections for these trees. When N is large, these different combinations of 

M(N-1) random selections produce “randomization” in the trees. Based on this observation, a 

variation of the KD-tree algorithm is proposed, called an Arbitrary KD-tree (KDA). The 

construction of a KDA is similar to that of a traditional KD-tree, except for the selection of the 

splitting dimension. Instead of looking for the dimension with the greatest variance, the KDA 

splits the data into two halves, at the median of a randomly selected dimension. This avoids the 

need to calculate variances and the trees are constructed more efficiently.  In addition to 

allowing greater computational efficiency, a multiple KDA organizes the data into 

independent tree structures, which is an advantage in a NN search when the number of 

backtracking is high. 

3.2 Complexity 

When constructing a traditional KD-tree, it needs to locate the dimension with the greatest 
variation to serve as a splitting dimension. We will analysis how many additions and 
multiplications it takes to find such dimension. And these operations are exactly saved when a 
KDA is constructed instead. The variance of n real numbers, y1, …, yn,  can be obtained by 
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Equation (1) takes (n+3) multiplications and (2n-1) additions. For N data of D-dim, it needs 

D(N+3) multiplications and D(2N-1) additions to locate the dimension of the greatest variance. 

A traditional KD-tree is a balanced binary tree. Without loss of generality, let us assume the 

(1) 
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number of data, N, is a power of 2. As shown in the Fig. 1, the constructed KD-tree will have a 

total of ( logN + 1) level, i.e., level 0, 1, …, logN. On the level k, k = 0, 1, …, (logN)-1, there 

are 2
k
  (parent) nodes that it each has N/2

k
 children. To complete the construction of the tree, 

each parent node needs to find out the dimension of the greatest variance among its children. 
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equation in (2), and the derivations in (3) and (4), we conclude that it requires an order of 

O(DNlogN) additions and multiplications to construct a traditional KD-tree of N data of D-dim. 

In real applications, it is very common that the number of data N is over thousands. Not to 

mention if there are multiple KD-trees to be constructed. 

 

.122...22 110  ii

 

 

),33log(

))12(3log(

)23()3
2

(2

log

1)(log

0

1)(log

0





 








NNND

NND

ND
N

D

N

N

k

k
N

k
k

k

 

 

).1log2(

))12(log2(

)22()1
2

2(2

log

1log

0

1log

0





 








NNND

NND

ND
N

D

N

N

k

k
N

k
k

k

 

 

4. Experimental Results and Analysis 

The experiments were conducted using MATLAB and C in an environment of UNIX, using a 

4G RAM. The test data consisted of synthetic data and SIFT features from real-world images. 

The synthetic data was randomly generated by uniform distribution and normal distribution. 

The range for the uniform distribution of data was [-1, 1] and for the normal distribution of 

 

 

 

 

 

 
Fig. 1. A KD-tree of N leaves assuming N  is a power of 2 
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data, the range was  = 0 and  = 1. Query points were randomly generated in the same way.  

Tests similar to [8] were performed on the SIFT feature with a dimension of 128. One image 

(e.g., ‘Buddha’ and ‘Bike’ in Fig. 3), or a combination of multiple images (e.g., ‘Graffiti’ in 

Fig. 3) of the SIFT feature points are required to form a test database. The query is selected 

from a pool that consists of n randomly selected feature points from the test database, such that 

each dimension is disturbed by a Gaussian noise, σ= 0.05. For a given query, a linear search is 

first used to find the exact nearest neighbor, as the ground truth. Either KDA or KDR is used 

with k backtrackings to search for the NN. If the NN is found that is same as the ground truth, 

then this search is a success. The accuracy rate is the average number of successes in 100 

repetitions. 

When searching for the NN for a given query, the Best-Bin-First method was adopted. Since 

the method works on multiple trees, it first executes one search for every tree and a single 

priority queue records all of the distances when traversing the branches, from the roots to the 

leaf nodes (of every tree). The distance between the query and the medium of the splitting 

dimension, the location of the branch and the index of trees are recorded in the priority queue. 

When backtracking occurs, the branch node with the minimum distance is selected. In the 

following discussion, for simplicity, let k be the number of backtrackings, D is the 

dimensionality, N is the number of data, KDAn is n Arbitray KD-trees and KDRn is n 

randomized KD-trees. In the following tests, multiple KD-trees are focused especially on 10, 

20, 40 tress. 

4.1 Synthetic data 

The test used D = 100, for N=5,000 data & 10,000 data, and D=300, for N=30,000 data & 

60,000 data. The number of backtrackings, k, were 25%, 50% and 75% of N, respectively. An 

accuracy of at least 50% is of interest as this is the minimum accuracy required for practical 

applications. The results are shown in Fig. 2. From Fig. 2, it is seen that, regardless of the type 

of data, the accuracy rate never exceeds 50%, if k = 25% N. The best performance for k = 25% 

N is an accuracy rate 0.425, for the KDR40 method in data (uniform, D=100, N=5000 and 

uniform, D=100, N=10,000). In the tests with synthetic data, KDR consistently outperforms 

KDA. Regardless of data types or data numbers, the average accuracy rates for KDR and KDA, 

and the improvement of KDR over KDA are summarized in Table 1. 

 
Table 1. Overall Accuracy Rates of the Synthetic Data for KDR and KDA 

 

 

4.1.1 Number of Trees 

The accuracy rates in different number of trees are compared. The types of data (uniform or 

normal generated), the number of data, and number of backtrackings (50%N and 75%N) are 

considered together. For the KDR multiple tree method, more trees produce better accuracy. 

However, the increase is quite limited. There are average increases of 0.6% and 0.528%, from 

KDR10 to KDR20 and from KDR20 to KDR40, respectively. The greater number of trees in a 

KDA multiple tree does not guarantee greater accuracy. The average rates of increase are 

0.019% and -0.024%, from KDA10 to KDA20 and from KDA20 to KDA40, respectively. 

Number of 
Backtrackings 

KDR KDA (KDR-KDA)/KDA 

50% N 60.57% 51.55% 17.50% 

75% N 79.98% 75.80% 5.51% 
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(a) D = 100 and N = 5,000 (b) D = 100 and N = 5,000 

(c) D = 100 and N = 10,000 (d) D = 100 and N = 10,000 

(e) D = 300 and N = 30,000 (f) D = 300 and N = 30,000 

(g) D = 300 and N = 60,000 (h) D = 300 and N = 60,000 

Fig. 2. Test Results on Synthetic Data (left column (a), (c), (e), (g): uniform-generated and right 

column (b), (d), (f), (h): Gaussian-generated). The vertical and horizontal axes are for accuracy 

(average of 100 tests) and number of backtrackings (25%, 50% and 75% of N), respectively, where D 

is the dimension of the data,  N is the number of data, and 
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4.1.2 Uniform vs. Normal 

The performance using uniform- or normal-generated data is compared, under different tree 

structures, for the same k (50%N and 75%N) and the same number of trees. The expression, u : 

n : t, the two shaded rows in Table 2, indicates that, for a total of (u+n+t) experiments, u times 

that uniform-generated data perform better, n times that normal-generated data perform better 

and there was a tie t times. From Table 2, uniform-generated data have better accuracy rates 

than normal-generated data do if KDA is used. However, as in the second row of the Table 2, 

the privilege is minor with an approximately 0.45%. As for KDR, it has better performance 

when data are uniform-generated and dimension is 100. But it makes no difference in 

normal-generated or uniform-generated data if the dimension goes up to 300 (as in the last row 

of the Table 2). 

4.2 SIFT feature points 

The test used SIFT feature points (dimension D = 128) extracted from the images shown in Fig. 

3 and the results are also summarized in Fig. 3. In contrast to use of the synthetic data, KDA 

consistently outperforms KDR, when real-world data is used. Similarly, regardless of the type 

of data or tree structures, the accuracy rate never exceeds 50%, if k = 25% N. The rest of 

discussion will focus on the backtracking number to be k =50%N and 75%N only. Table 3 

describes the overall accuracy rates for KDA and KDR methods. It also indicates that the 

average improvements of KDA over KDR to be 27.68% and 7.61% when k =50%N and 75%N, 

respectively. 

The accuracy rates in different number of trees are compared. It did not show any impact of 

the number of trees on the accuracy rates, in our experiments. For the KDR multiple tree 

method, there are average increases of -0.27% and 0.03%, from KDR10 to KDR20 and from 

KDR20 to KDR40, respectively. For the KDA multiple tree method, there are average 

increases of -0.15% and 0.02%, from KDA10 to KDA20 and from KDA20 to KDA40, 

respectively. Furthermore, regardless of the number of backtracking (k =50%N or 75%N), 

from Fig. 3, the average accuracy rates for KDR and KDA with respect to the number of trees 

are summarized in Table 4. To conclude the above discussion, using 10 trees for KDR and 

KDA is a moderate choice. To investigate the number of backtrackings relating to the 

performance, a more detailed comparison of KDA10 & KDR10 is given in the ensuing 

discussion. 
 

 

 

 

Table 3. Overall Accuracy Rates of The SIFT Data for KDR and KDA 
Number of 

Backtrackings 
KDR KDA (KDA-KDR)/KDR 

50% N 46.40% 59.24% 27.68% 

75% N 74.43% 80.10% 7.61% 

 

Table 2.The Performance Comparison on Different Types of Data (see text) 

                         

 

D = 100  
N = 5000 

D = 100  
N =10000 

D = 300  
N =30000 

D = 300 
 N =60000 

Average 

KDA 6 : 0 : 0 6 : 0 : 0 6 : 0 : 0 6 : 0 : 0 N/A 

 KDA  acc. rate of  
Unif vs Norm 0.51% 0.43% 0.38% 0.49% 0.45% 

KDR 6 : 0 : 0 6 : 0 : 0 1 : 3: 2 1 : 2 : 3 N/A 

KDR  acc. rate of  
Unif vs Norm 1.8% 2.13% -0.05% -0.03% 0.96% 
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(a)  

 

 

  
(b) 

 

 
(c) 

 

Fig. 3.  Test Results on SIFT feature points (all the feature points are of dimension 128, N is the 

number of SIFT features points) Left column shows the test images. Right column shows the 

accuracy rates of NN search results. The vertical and horizontal axes are for accuracy (average of 100 

tests) and number of backtrackings in terms of the data number, respectively, where the images from 

top to bottom are  (a) “Buddha” (N = 4,894), (b) “Graffiti” (N = 5,801), (c) “Bike” (N = 4,359), and 

                
KDA10        KDR10         KDA20         KDR20          KDA40         KDR40 
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4.3  KDA10 vs. KDR10 

The performances on KDA10 and KDR10 were further compared. From Fig. 4, it is seen that 

the accuracy rate of KDA10 is 50% or more, when k  37%N, while KDR requires that k  

51%N. The accuracy rate of KDA10 is 70% or more, when k  62%N, while KDR requires 

that k  72%N. The difference in their accuracy is not so different for k to be approximately 

80%N - 90%N. However, a number of backtrackings that is 80% of the data amount or more 

defeats the purpose of multiple KD-trees, which is a lower number of backtrackings and a high 

accuracy rate. For feature matching, the accuracy rate must be at least 70%. In the next 

experiment, we apply feature matching by KDA10 in image stitching with the number of 

backtrackings to be k  60%N. 

 

(a) N = 4,894                                                            (b) N = 2,027 

(c) N = 4,359 

Fig. 4.  The accuracy comparison on SIFT feature points by KDA10 and KDR10. The test images 

from top to bottom are (a) “Buddha” (N = 4,894), (b) “Graffiti-1” (N = 2,027), (c) “Bike” (N = 4,359), 

Test images are the same with the Fig.3 except “Graffiti-1” is the first image from the set of  

“Graffiti” images. The vertical and horizontal axes are for accuracy (average of 100 tests) and 

number of backtrackings, where 
 

 

Table 4. Accuracy Rates of the SIFT Data for KDR and KDA  

With Respect to the Number of Trees 

Methods 10 trees 20 trees 40 trees 

KDR 60.58% 60.32% 60.35% 

KDA 69.77% 69.61% 69.66% 
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4.4 Image Stitching Application 

In accordance with the previous conclusion, KDA10 is more suited to feature matching on 

image stitching, when the number of backtrackings is 60% of the data amount, as suggested. 

The big Foku Buddha images from Huang-Ze Temple, Guangyuan City, Sichuan, China, with 

sizes 28484288, 25923872 were used; one as the query image and the other as the target 

image. q Query points were manually picked from query images and then each selected point 

automatically locates r nearest SIFT feature points, generating a total (rq) query SIFT feature 

points. Using this method, points can be selected that are located in both the query and target 

images and feature matching can be restricted to (rq) points only. In this experiment q = r = 10, 

i.e., a total of 100 feature matches were implemented. RANSAC was then applied to these 100 

matched pairs, to solve a homography matrix between these two images. Using this 

homography matrix, the two images were stitched into one. The results are shown on Fig. 5.  

 

   

   

(a)  (b)  (c)  

Fig. 5.  Image stitching using KDA10 for feature point matching. 100 NN are located by KDA10 on the 

target images corresponding to 100 query points of the query images. To stitch two images, techniques 

of RANSAC and homography are used where the images from left column to right column are (a) the 

query images, (b) the target images and (c) the stitched images. 
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5. Conclusion 

This paper presents a KDA method for identification of a NN in a large quantity of 

high-dimensional data. Comparing to Lowe’s KDR method [7] for the construction of one tree 

for N data, with dimensionality D, KDR requires extra )( NlogDNO  additions and
 )( NlogDNO  

multiplications.
 
The proposed method was tested using synthesized, high-dimensional data 

and real-world SIFT data, both of which had large quantities of data. The experiments 

indicated that the proposed method outperforms the KDR method for the SIFT data. However, 

the use of synthesized, high-dimensional data does not produce the same result. It is suggested 

that one reason for the different results yielded using the synthesized data and the real-world 

data is the notorious nature of dimensionality. Beyer et al. [10] indicated that distances to near 

and far neighbors become more similar, as the dimensionality, D, of the data increases (i.e., 

loss of relative contrast): 

 

max min

min

0.lim
D

dist dist

dist


  

 

Thus, it is futile to use conventional similarity measurement to find the NN in 

high-dimensional data. Recently, some studies have noted that the difference in distances 

between pairs diminishes with increasing dimensionality, which severely hampers all 

distance-based algorithms [11], [12]. 

Finally, the KDA method was used for image stitching. With 100 query points and the 

number of backtrackings limited to 60% of the total data amount, the stitching result is 

satisfactory.  
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